Highly Efficient Dimension Reduction for Text-Independent Speaker Verification Based on Relieff Algorithm and Support Vector Machines

نویسندگان

  • Abdolreza Rashno
  • Hossein SadeghianNejad
  • Abed Heshmati
چکیده

Automatic speaker verification (ASV) systems are among the biometric systems used in security and telephone-based remote control applications. Recent years have witnessed an increasing trend in research on such systems. These systems usually use high dimension feature vectors and therefore involve high complexity. However, there is a general belief that many of the features used in such systems are irrelevant and redundant. So far, many methods for feature dimension reduction in these systems have been proposed, most of which are wrapper-based and thus computationally expensive since system performance is used for feature subset evaluation. This involves system training and performance evaluation for each feature subset, which is a time consuming task. In this paper, we propose a feature selection approach based on Relieff algorithm for ASV systems using support vector machine (SVM) classifiers. This method is wrapper-based but makes use of Relieff weights in order to have a lower using of system performance. Thus this method has lower complexity compared to other wrapper-based methods, can lead to 69% feature dimension reduction and has a 1.25% of Equal Error Rate (EER) for the best case that appeared in RBF kernel of SVM. The proposed method has been compared with Genetic Algorithm (GA) and Ant Colony Optimization (ACO) methods for feature selection task. Results show that the EER, number of selected features and time complexity of the proposed method is lower than these methods for different kernels of SVM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting GMM-based Quality Measure for SVM Speaker Verification

In this paper, we examine the problem of quality measurement for speaker verification using support vector machines (SVMs). An efficient Gaussian mixture models (GMMs) based quality estimation algorithm is proposed to potentially utilize speaker-specific broad acoustic-class characteristics. Some verification strategies are also considered in the test phase. We perform clustering-based vector p...

متن کامل

Kernel Alignment Maximization for Speaker Recognition Based on High-Level Features

In this paper text-independent automatic speaker verification based on support vector machines is considered. A generalized linear kernel training method based on kernel alignment maximization is proposed. First, kernel matrix decomposition into a sum of maximally aligned directions in the input space is performed and this decomposition is spectrally optimized. The method was evaluated for high...

متن کامل

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Robust Support Vector Machines for Speaker Verification Task

An important step in speaker verification is extracting features that best characterize the speaker voice. This paper investigates a front-end processing that aims at improving the performance of speaker verification based on the SVMs classifier, in text independent mode. This approach combines features based on conventional Mel-cepstral Coefficients (MFCCs) and Line Spectral Frequencies (LSFs)...

متن کامل

Learning the decision function for speaker verification

This paper explores the possibility to replace the usual thresholding decision rule of log likelihood ratios used in speaker verification systems by more complex and discriminant decision functions based for instance on Linear Regression models or Support Vector Machines. Current speaker verification systems, based on generative models such as HMMs or GMMs, can indeed easily be adapted to use s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013